

Carlos Landeras

Development Team Lead at @Plainconcepts
Madrid & Benelux

Microsoft MVP Developer Technologies

@Carlos_Lande

CarlosLanderas O

Resilience

Is the ability to absorb or avoid damage
without suffering complete failure

plan -
ccccc pts

Resilience

Is the ability to recover from failures and
continue to function

plan -
concepts

Resilience

|s about accepting the fact that
fatlures...

Will occur!

plan -
ccccc pts

Resilience

Fail fast, fail often!
Detecting failure early reduces the cost of a fix.

Resiliency experiments detect potential failures before

they become a catastrophe

plan -
concepts

Resilience

“Failures are a given, and everything will
eventually fail over time.” Werner Vogels,
Amazon CTO

“Resilience is all about being able to
overcome the unexpected”

“The goal of resilience is to thrive”

“Push your system almost to the breaking
point”

plain
concepfts

Resilience

It’s all about balance...

Loss of money due to
outages

Cost of being

. Clients happyiness
resilient

Software provider
reputation

plan -
concepts

Resilience at different levels

Infrastructure Layer

Networking and Data

Software and application design

Site Reliability engineering team & Developers

plan -
concepts

Resilience Patterns

« Duplicate elements to avoid having a single
point of failure

» |Nncrease overall availability of the system

Component Availability Downtime
X 99% (2-nines) 3 days 15 hours
Two X in parallel 99.99% (4-nines) 52 minutes
Three X in parallel 99.9999% (6-nines) 31 seconds

plan
concepts

Redundancy

Multi-Region redundancy

 One region goes down, traffic routes to the closest region
without intervention

» Closest region routing by latency

plan -
concepts

Azure Load Balancers

Global

Front Door (layer 7)

Great for HTTP Acceleration, Affinity, SSL offload, instant
failover, path routing, WAF, Rate limit, Caching (HTTP/S)

Traffic Manager — Dns Resolver

Balances at domain level
Great for TCP, UDP (non-HTTP/s)
Slower failover (DNS Caching, TTLs honoring)

Regional

Application Gateway (layer 7)

SSL offload, E2E SSL, WAF, L7 Load balancer
(HTTP/S)

{-§-} Azure Load Balancer (layer 4)

Great for TCP, UDP (non-HTTP/s)
Low latency, designed to handle millions rps

Front Door Fail Over Demo

Decision tree

Web application? Internet facing

(HTTP/HTTPS)

application?
A

Yes

Global / Deployed in
multiple regions?

h J

Internet facing | No

Azure Load Balancer

Traffic Manager +
Azure Load Balancer

application? |

Yes

/

Global / Deployed in | Yes Do you require SSL offlc_uad or Yes
multile regions? application-layer processing per
P 9 : request?

No

No v

Hosting — Paa$, laaS, AKS

Application Gateway

Azure Front Door +
Application Gateway

Azure Front Door

Azure Front Door +

Application Gateway
ingress controller

Azure Front Door +

Azure Load Balancer

(App Service,
Functions)
A
AKS
laaS (VMs)
Yes
Do you require N No
performance

acceleration?

Application Gateway

files.contoso.com www.contoso.com
Traffic Manager Front Door
e °
all other requests /store/*
gy g g R . g
v v
/images/* % other requests /images/* % other requests
v v
v Web Tier AppGW. Web Tier AppGW. v

Image Server Pool —l |_ Default Server Pool

Load Balancer

Database Tier / l \

Blob Store - - - - App Service Instance

Image Server Pool —l |_ Default Server Pool

App Service Instance @ @ @ @
Blob Store

Load Balancer

Database Tier l \

SQL Database SQL Database
A A
i |
Region 1 i |
___ S ——— | -
1
]

Data Replication

.
Region 2

Multi-Region AKS Aaure

Traffic Manager

%)

Primary Region (1) Primary Region (2)
Network Appliances Metwork Appliances
MNetwork < > >
Load Balancer Load Balancer
AKS AKS
Infrastructure

Multi-Region AKS

® ezt US

Geo Replication tips @

« Stateless Applications (Avoid sessions, local state)

« State should be shared across regions (Distributed cache,
replicated databases

« Only use region resources

* |f you wan't clients to stick to resources, use “stickiness”

* |f you do not respect this, you'll probably have balancing issues

Auto Scaling

 Know the different scaling models for your cloud resources

 Choose your tiers and configure scaling (when needed)

« Azure Firewall (auto scaled)

 Azure Front Door (auto scaled)

« Azure Traffic Manager (DNS based)

« Azure Application Gateway (manual / autoscaling)

« Azure Load Balancer (Basic / Standard 10x tiers)

« Azure Kubernetes Service Nodes (manual / autoscaling)

« Azure Sgl Server (V/H), Redis (tiers), and Cosmos DB (Region RUs)

Auto Scaling

Application Level Auto Scaling

\ =\
awa
waw

P Kubernetes HPA

Azure Kubernetes Service (AKS) cluster

thnde || Mode || Mode |

Honzontal Pod Autoscaler

l Scale out l
Pod Pod

Z

4
@ Web App metrics-based auto scaling

Scale out
When ASP-landewe-9c58 (Average) CpuPercentage > 70 Increase count by 1
Or ASP-landewe-9c58 (Average) MemoryPercentage ... Increase count by 1
+ Add a rule
Minimum @O Maximum @ Default

1 jE | [

Infrastructure as Code

Some facts

« As humans, we are not very good at repetitive tasks. We are very error
prone.

« Complex systems are hard to manually reproduce right at first

« |f we suffer a datacenter or infrastructure disaster, we are in a race to
prevent lost of revenue.

« Human errors are a reality. Ooops, | deleted the production Resource
Group. | swear | was in the Development blade!

« All above = Unhappy clients :_(

Infrastructure as Code

Solutions

« Infrastructure as code guarantees repeatability and being up and
running in minutes

« Machines are very good at repeating tasks with the same exact output.
We are not.

« |Infrastructure as code provides system history preservation

« We can fastly reproduce our infrastructure in other region if needed

Infrastructure as code in Azure

? Source repository

Template parameters

— Region : West Europe
— AKSNodes : 2
_@ RedisSkuName: Standard

v

— N

Automatic

Azure Pipelines infrastructure
Provisioning

-

Infrastructure
ARM Templates

L

Caching for resilience

Cache: hardware or software component that stores data so that
future requests for that data can be served faster (Wikipedia)

plan -
concepts

Why caching? @
o-0-0

« Accelerate content delivery = Better user experience

« Distributed caches provides shared state in distributed architectures
(Stateless)

« Improves application scalability avoiding I/O operations, network
connections and relieves database stress

* |n ashort timespan, we can be serving the exact same content to
hundreds / thousands of users. Caching increases throughtput and RPS
and helps preventing database connections exhaustion.

 Enables graceful degradation and fast fail (We will see this later!)

plan -
concepts

Why caching?

=

NETFLIX ORIGINALS

NETFLIX ORIGINAL NETFLIX ORIGINAL N&le ORIGINAL NETFLIX ORIGINAL NETFLIX ORIGINAL

Wil Wil) :
gk o [CAIUS Abstract

Trending Now
2l
ZEITGEIST
o WARD

THF/— —.\
e N1 2 e 5 "STANDUPS l

plan__ - Image credits: Adrian Hornsbv PrlnC|paI Developer Advocate awscloud

NETFLIX ORIGINAL

HISTURE

¢

https://twitter.com/adhorn?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

Typical cache usage : Cache-Aside

public async Task<Data> GetSomeData(string key)

{
var data = _cache.GetAsync(key);

i1f(data ==)
{

data = _query.Get(key);
awalt _cache.SetAsync(key, data, options);

}

return data;

plan -
concepts

@

Risks of caching @
o-0-0

« Data Staleness: Risk of serving old data

* You need to balance right keys expiration times to prevent long aged
data.

* |fyou evict keys very often, this causes performance problems.

* You need to measure application request patterns and volume in order
to properly adjust expiration times

« Eventual consistency: Changes in the database or cache nodes are not
iImmediately reflected.

plan -
concepts

Health Checks

Health Checks are designed to retrieve information about the
health of a service / application and its dependencies.

Health Checks are present in several cloud resources. They are used
to ensure availability and decide where to route requests

e Azure Front Door
« Azure Traffic Manager
« Load Balancers

plan -
concepts

Health Checks

INn the times we are living in, Health Checks are a must have for
applications as well.

Every application should expose health checks mechanisms. Self
health and dependencies status.

Implementing health checks, allow infrastructures and container
orchestrators to execute healing and high-availability strategies

plan -
concepts

Liveness Probes

Service

Kubernetes liveness probes allow the
orchestrator to kill a pod container instance / \,

that is not working properly.

This helps to recover from eventual or
transient failures.

Liveness Liveness
PASS PASS

plan
concepts

Readiness Probes

Kubernetes readiness probes allow
the orchestrator to exclude non ready
containers from traffic.

While not ready, the container won't
serve requests.

plan
concepts

Service

"4

;

Readiness
PASS

hY

T

Readiness
PASS

Health Checks

N

?

yu)

\“‘f "i'? 5

g

! pProblems

{

)
["
)

More on Health Checks

SDN Cast — Carlos Landeras about AspNetCore and Kubernetes HealthChecks

https://www.youtube.com/watch?v=kzRKGCmGbqo&t=198s

Kubernetes liveness and readiness probes using HealthChecks

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/ku
bernetes-liveness.md

Kubernetes AspNetCore HealthChecks Operator

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/k8
s-operator.md

https://www.youtube.com/watch?v=kzRKGCmGbqo&t=198s
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/kubernetes-liveness.md
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/k8s-operator.md

Kind of Failures

Transient Failures

All applications that communicate with remote services and resources must be
sensitive to transient faults.

Transient faults include the momentary loss of network connectivity to
components and services, the temporary unavailability of a service, or
timeouts that arise when a service is busy

plan -
concepts

Cascading Failures

A cascading failure is a process in a system of
interconnected parts in which the failure of one or few

parts can trigger the failure of other parts and so on
(Wikipedia)

A very common cascading failure is overload. The service struggles to serve
requests and ends suffering resource exhaustion

plan -
concepts

Application
Resilience Strategies

Resilience Strategies

Retry

(policy
family)

(quickstart ; deep)

Circuit-
breaker
(policy
family)

(quickstart ; deep)

plan -
concepts

Many faults are transient and may self-
correct after a short delay.

When a system is seriously struggling,
failing fast is better than making
users/callers wait.

Protecting a faulting system from overload
can help it recover.

"Maybe it's
just a blip”

"Stop doing it

if it hurts”

"Give that

system a
break"”

Allows configuring automatic retries.

Breaks the circuit (blocks executions) for
a period, when faults exceed some pre-
configured threshold.

Resilience Strategies

Timeout Beyond a certain wait, a success result is "Don't wait Guarantees the caller won't have to wait
(quickstart: deep) UNlikely, forever” beyond the timeout.

When a process faults, multiple failing calls
backing up can easily swamp rescurce (eg
threads/CPU) in a host.

"One fault]]
Bulkhead houldn't sink Constrains the governed actions to a
_ _ shouldn't sin , _ . : .
Isolation A faulting downstream system can also the whol fixed-size resource pool, isolating their
. e whole ,
(quickstart : desp) ~ Cause 'backed-up’ failing calls upstream. hio” potential to affect others.
ship

Both risk a faulting process bringing down a
wider system.

plan -
concepts

Resilience Strategies

Cache

(quickstart ; deep)

Fallback

(guickstart ; deep)

plan -
concepts

Some proportion of requests may be

similar.

Things will still fail - plan what you will do
when that happens.

“You've asked

that one
before”

"Degrade
gracefully”

Provides a response from cache if

known.

Stores responses automatically in cache,
when first retrieved.

Defines an alternative value to be
returned (or action to be executed) on

failure.

Chaos Injection

Exception: Inject random exceptions in our system randomly

Result: Substitute results to fake faults in our system

Latency: Random latency injection into system executions

Behaviour: Allows extra behaviour injection (Restart a service, kill a container,
reboot a virtual machine, stress the cpu, block DNS resolution, Continuously
write on a hard disk)

plan -
concepts

Chaos to the cluster Demo

Chaos and Resilience Demos

Credits:

Microsoft Azure documentation

Adrian Hornsby Principal Developer Advocate, Architecture @awscloud

plan -
concepts

https://azure.microsoft.com/
https://twitter.com/adhorn?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/awscloud

plain -
concepts

Rediscover
the meaning of technology

www.plainconcepts.com

For further information

info@plainconcepts.com

Thank you
for

your time

