


Carlos Landeras

Development Team Lead at @Plainconcepts
Madrid & Benelux

Microsoft MVP Developer Technologies

@Carlos_Lande

CarlosLanderas



Resilience

Is the ability to absorb or avoid damage 
without suffering complete failure



Resilience

Is the ability to recover from failures and 
continue to function



Is about accepting the fact that 
failures…

Will occur!

Resilience



Fail fast, fail often!

Detecting failure early reduces the cost of a fix.

Resiliency experiments detect potential failures before 
they become a catastrophe

Resilience



Resilience facts

“Failures are a given, and everything will 
eventually fail over time.” Werner Vogels, 
Amazon CTO

“Resilience is all about being able to 
overcome the unexpected”

“The goal of resilience is to thrive”

“Push your system almost to the breaking 
point”



Resilience

Cost of being 
resilient

Loss of money due to 
outages

Clients happyiness

Software provider 
reputation

It’s all about balance…



Resilience at different levels

• Infrastructure Layer 

• Networking and Data

• Software and application design

• Site Reliability engineering team & Developers



Resilience Patterns



Redundancy

• Duplicate elements to avoid having a single 
point of failure

• Increase overall availability of the system



Multi-Region redundancy

• One region goes down, traffic routes to the closest region 

without intervention

• Closest region routing by latency



Azure Load Balancers

Global

Front Door (layer 7)

Traffic Manager – Dns Resolver 

Regional

Balances at domain level
Great for TCP, UDP (non-HTTP/s)
Slower failover (DNS Caching, TTLs honoring)

Great for HTTP Acceleration, Affinity, SSL offload, instant 
failover, path routing, WAF, Rate limit, Caching (HTTP/S)

Application Gateway (layer 7)

SSL offload, E2E SSL, WAF, L7 Load balancer 
(HTTP/S)

Azure Load Balancer (layer 4)

Great for TCP, UDP (non-HTTP/s)
Low latency, designed to handle millions rps



Front Door Fail Over Demo



Decision tree





Multi-Region AKS



Multi-Region AKS



Geo Replication tips

• Stateless Applications (Avoid sessions, local state)

• State should be shared across regions (Distributed cache, 
replicated databases

• If you wan’t clients to stick to resources, use “stickiness”

• If you do not respect this, you’ll probably have balancing issues

• Only use region resources



Auto Scaling

• Know the different scaling models for your cloud resources

Infrastructure Scaling:

• Azure Firewall (auto scaled)
• Azure Front Door (auto scaled)
• Azure Traffic Manager (DNS based)
• Azure Application Gateway (manual / autoscaling)
• Azure Load Balancer (Basic / Standard 10x tiers)
• Azure Kubernetes Service Nodes (manual / autoscaling)
• Azure Sql Server (V/H), Redis (tiers), and Cosmos DB (Region RUs)

• Choose your tiers and configure scaling (when needed)



Auto Scaling

Web App metrics-based auto scaling

Application Level Auto Scaling

Kubernetes HPA



Infrastructure as Code

• As humans, we are not very good at repetitive tasks. We are very error 
prone.

Some facts

• Complex systems are hard to manually reproduce right at first

• If we suffer a datacenter or infrastructure disaster, we are in a race to 
prevent lost of revenue.

• Human errors are a reality. Ooops, I deleted the production Resource 
Group. I swear I was in the Development blade!

• All above = Unhappy clients :_(



Infrastructure as Code

• Infrastructure as code guarantees repeatability and being up and 
running in minutes

Solutions

• Machines are very good at repeating tasks with the same exact output. 
We are not.

• Infrastructure as code provides system history preservation

• We can fastly reproduce our infrastructure in other region if needed



Infrastructure as code in Azure

Infrastructure 
ARM Templates Azure Pipelines

Automatic 
infrastructure 
Provisioning

Source repository

Template parameters

Region : West Europe
AKSNodes : 2
RedisSkuName: Standard



Caching for resilience

Cache: hardware or software component that stores data so that 

future requests for that data can be served faster (Wikipedia)



Why caching?

• Accelerate content delivery = Better user experience

• Distributed caches provides shared state in distributed architectures 
(Stateless)

• Improves application scalability avoiding I/O operations, network 
connections and relieves database stress

• In a short timespan, we can be serving the exact same content to 
hundreds / thousands of users. Caching increases throughtput and RPS 
and helps preventing database connections exhaustion.

• Enables graceful degradation and fast fail (We will see this later!)



Why caching?

Image credits: Adrian Hornsby Principal Developer Advocate awscloud

https://twitter.com/adhorn?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor


Typical cache usage : Cache-Aside



Risks of caching

• Data Staleness: Risk of serving old data

• You need to balance right keys expiration times to prevent long aged 
data.

• If you evict keys very often, this causes performance problems.

• You need to measure application request patterns and volume in order 
to properly adjust expiration times

• Eventual consistency: Changes in the database or cache nodes are not 
immediately reflected. 



Health Checks

Health Checks are designed to retrieve information about the 
health of a service / application and its dependencies.

Health Checks are present in several cloud resources. They are used 
to ensure availability and decide where to route requests

• Azure Front Door
• Azure Traffic Manager
• Load Balancers



Health Checks

In the times we are living in, Health Checks are a must have for 
applications as well.

Every application should expose health checks mechanisms. Self 
health and dependencies status.

Implementing health checks, allow infrastructures and container 
orchestrators to execute healing and high-availability strategies



Liveness Probes

Kubernetes liveness probes allow the 
orchestrator to kill a pod container instance 
that is not working properly.

This helps to recover from eventual or 
transient failures.



Readiness Probes

Kubernetes readiness probes allow 
the orchestrator to exclude non ready 
containers from traffic. 

While not ready, the container won’t 
serve requests.



Problems

Health Checks



Problems

More on Health Checks

https://www.youtube.com/watch?v=kzRKGCmGbqo&t=198s

SDN Cast – Carlos Landeras about AspNetCore and Kubernetes HealthChecks

Kubernetes liveness and readiness probes using HealthChecks

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/ku
bernetes-liveness.md

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/k8
s-operator.md

Kubernetes AspNetCore HealthChecks Operator

https://www.youtube.com/watch?v=kzRKGCmGbqo&t=198s
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/kubernetes-liveness.md
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/doc/k8s-operator.md


Kind of Failures



Transient Failures

All applications that communicate with remote services and resources must be 
sensitive to transient faults.

Transient faults include the momentary loss of network connectivity to 
components and services, the temporary unavailability of a service, or 
timeouts that arise when a service is busy



Cascading Failures

A cascading failure is a process in a system of 
interconnected parts in which the failure of one or few 
parts can trigger the failure of other parts and so on 
(Wikipedia)

A very common cascading failure is overload. The service struggles to serve 
requests and ends suffering resource exhaustion



Application
Resilience Strategies



Resilience Strategies



Resilience Strategies



Resilience Strategies



Chaos Injection

Exception: Inject random exceptions in our system randomly

Result: Substitute results to fake faults in our system

Latency: Random latency injection into system executions 

Behaviour: Allows extra behaviour injection (Restart a service, kill a container, 
reboot a virtual machine, stress the cpu, block DNS resolution, Continuously 
write on a hard disk)



Chaos to the cluster Demo



Chaos and Resilience Demos



Credits:

Microsoft Azure documentation

Adrian Hornsby Principal Developer Advocate, Architecture @awscloud

https://azure.microsoft.com/
https://twitter.com/adhorn?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/awscloud


www.plainconcepts.com

For further information

info@plainconcepts.com

Thank you
for
your time


