
Distributed Messaging Patterns

Cecil L. Phillip🇦🇬
Senior Cloud Advocate @ Microsoft
@cecilphillip



Communication

Distribution of messages 
from one source to anyone 

interested

Broadcast

“Radio”

Moving messages between 
two endpoints. 

Direct

“Phone”

Moving messages via 
communication middleware 

Brokered

“Mail”

How do we share information between systems?



Messaging is all about getting data from here to there

(Getting data back from there to here is the just same thing)

A BTransfer



Sometimes there’s a lot of “here”

A BTransfer

A

AA

A



Sometimes there’s A LOT of data

A BTransfer



Sometimes there’s a lot of “there”

A BTransfer

B B

B

B B



Sometimes the “there” are all different

A ETransfer

L L

C

C I



Sometimes “there” isn’t currently paying attention

A BTransfer



Sometimes “there” isn’t currently paying attention

A BTransfer



Sometimes there’s trouble

A BTransfer



Sometimes “there” is VERY BUSY

A BTransfer



Messaging Protocols
IETF HTTPS & WebSocket Protocol

• Request-response application protocol 

• OSS: Nginx, Apache HTTP Server, Kestrel, YARP, Envoy

OASIS AMQP 1.0 
• Symmetric, reliable message transfer protocol with support for 

multiplexing and flow control

• OSS: Apache ActiveMQ, Apache Qpid Broker-J, Apache Qpid Dispatch 
Router, Apache Camel, Pivotal RabbitMQ

OASIS MQTT 3.x/5.x
• Reliable publish-subscribe protocol for telemetry transfer and state 

synchronization

• OSS: Apache ActiveMQ, Eclipse Hono, Pivotal RabbitMQ, Eclipse 
Mosquitto, HiveMQ, VerneMQ, etc.



Synchronous vs. Asynchronous

ReceiverSender ReceiverSender

• Sender sends request and then waits for
an immediate answer

• May happen via asynchronous I/O, but 
the logical thread is preserved.

• Sender sends a message and proceeds to
do other things.

• Replies may flow back on a separate path.



Synchronous Patterns



Throttling

• Request rates can be defined 
on per-client based on a 
given criteria

• Throttling state can be 
communicated via the 
transport protocol

• Clients should implement an 
adaptive retry strategy to get 
their work submitted

ServerClient

Client

Client



Load balancing w/ a Reverse Proxy

• Messages are distributed 
between multiple servers

• Clients only need direct 
access access the proxy

• The proxy can be enhanced 
with additional functionality 
via middleware

Server

Client

Client

Client

Server

Server

Proxy



Retry Strategies

• Connectivity between 
systems can unreliable and 
faults can occur for various 
reasons

• Use reasonable delays 
between retries to prevent 
overloading the system

• Know when to stop retrying

ServerClient

Client

Client



Asynchronous Patterns



Long-Running Work

• Processing at the consumer may 
take very long (minutes to hours)

• Producers entrust jobs into a 
queue.

• Bad jobs are moved into a dead-
letter queue for inspection.

• Flow back to the producer is 
performed through a reply queue

ConsumerProducer

correlationid:

reply queue

replyto:

dead-letter queue

Retry 1

Retry 2



Load Leveling

• Queues act as an inbox for 
requests to a consumer.

• Consumer pulls work when it 
has capacity for processing.

• Consumers process at their 
own pace.

• No “too busy” errors, easier 
resource governance.

Consumer

Producer
Producer

Producer
Producer

Producer

requests/sec

time

requests/sec

time

processing capacity



Load Balancing (and Auto Scaling)

• Multiple consumers compete 
for messages

• Truly load-aware job 
balancing

• Queue-length can be 
observed and more 
consumers can be added to 
to manage load

Consumer

Producer
Producer

Producer
Producer

Producer

queue length rolling average

time

scale-up threshold

scale-down threshold +1

Consumer
Consumer



Publish-Subscribe

• Directing one input message 
to zero or more interested 
parties (subscribers).

• Every subscriber can obtain a 
copy of every published 
message.

• Subscribers may provide 
filters that select a subset of 
the published messages.

ConsumerProducer 2 4 6

1 2 3

1 3 5

Topic filter

filter

filter

Consumer

Consumer



Sparse Connectivity

• Common scenario with 
mobiles devices and IoT 
applications. 

• Mobile users switch networks, 
go out of range, hit 
bandwidth caps, etc.

• Using a local store/forward 
queue makes communication 
paths more robust.

Consumer

Producer
Push

Pull

store and forward queue

Unreliable network boundary, e.g. mobile wireless networking 

move messages
while online



Recap

Synchronous Asynchronous

ReceiverSender ReceiverSender



https://www.theurlist.com/distributed-messaging-patterns

Samples and Documentation

https://www.theurlist.com/distributed-messaging-patterns


Thanks and …
See you soon!

Thanks also to the sponsors.
Without whom this would not have been posible.


