#DotNet2020

Rocket your Machine Learning
models to the Edge with C#

DotNet2020 #DotNet2020

ORGANIZATION

plain concepls

PLATINUM SPONSORS

=" Microsoft

COLLABORATORS

Universidad
& CEU | Ui

Thank you!

DotNet2020 #DotNet2020

Alexander s Rodri g0 et
Al Software Engineer Al Technical Lead
@alexndrglez @mrcabellom

alexglezglez96 @gmail.com mrcabellom@gmail.com

DotNet2020 #DotNet2020

How can | build intelligent
systems?

A neighborhood have a CCTV system to improve the security of the people who lives there. All the residents
want to analyze the traffic inside the residential area in order to make it a safe place where their childrens

can play outside.

DotNet2020 #DotNet2020

How can | build intelligent
systems?

Main challenges

* Artificial Intelligence techniques for object
detection and tracking.

* (Car detection.

* Danger zones detection.

* |sour deep learning
model ready to real-
time inference?

e Do we have a real-time architecture
able to work with a CCTV or a video
management system?

DotNet2020 #DotNet2020

Current status of Object detection -
Tesla AutoPilot

2K ™ »
. - . -
W i alr . e) . 4
‘.'..-Q (o '<) : A W P K . »
'y g »
- v > » &
00 - " . b b 4
htoad A - .
LS AN) Y
25 d
/ 4’;.:, “
Y i ~
Cal
1 - 3 ' { N S
| (A : ‘ ', 4‘ ". -_;"_,.
|\ o, , Y b k
| :
.|l »

| L1 RO F:1 ONet
t(o 99)‘ f(o 0‘). ' oll"r:‘b‘-'»;‘.;.".‘.'f.-) hasliasie e ik ' ;) ,
- AR NRW FLP(OOO) mp(ooo) T T TP, W94 AP0 21
| LEF1 |‘|!:||-|-J:-|."I||.| FEHITLE LN LH;H . vs: 2‘.5 m Sh '
. 4 !00000 Aurmwomm 2 | merge: 1.0 1 54.6 R
1+0.0000 BLINDER N

+0.0000 RAINING ke o ¢ b
4010000 TIRE_SPRAY i ; .

b1 HFOTIH RASHAF UFHICLF CAHFRA

o TP o P e b il P EaT g P AL 3

i RIB-T FETRWARD VWEHICLE CTHERH

DotNet2020 #DotNet2020

Current status ML Object detection

Faster RCNN YOI.Ov3
(Ren et al) (Redmon and Farhadi)
RCNN SSD $
:thl-) (L etal) VOT QOO CenterNet
77 (Zhouetal.)
OverFeat Fast RCNN (Redmon and Farhadi)

YoloV4 YoloV5 PP-Yolo
2019 2020 2020 2020

2013 2014 2015 2016 2017 2018

l * - l
RetimaNet
(Lin eral)

RFCN SNIPER
(Dai et al.) (Singh et al)

DotNet2020

#DotNet2020

Current status ML Object detection — Yolo Models

YOLOvV3

@ Concatenation

@ Addition

Residual Block

Detection Layer

Upsampling Layer

e Further Layers

Scale 1
82 Stride: 32

YOLO v3 network Architecture

Scale 3

106 Stride: 8

Tiny YOLOV3

l Input 416x416x3

[Corv 3x3/1 filters 16]
l 416x416x15

(Maxpool 2x2 /2]
| 208208415

([com3xs/r fmers32 |
l 208x208x 32

[_ Maxpool 2x2/2 j
L 109x 10232

[_ Corw3x3/1 fiters64)

l. 104w 10t 54
(Maxpool 2x2/2 3
l’ 52n5obd
Corv 3x3/1 filtters 128
C
l’ Saxodxl 28
[Maxpool 2x2 /2

l el -] T e

[Corv 3x3/1 fiters 256 }

l 26x26x256
[Maxpool 2x2 /2

l 13x13x256
(Corv3x3/1 fiters512

l 13x13x512
[_ Maxpool 2x2/1 j

13x13x512

[Corw 3x3/1 fiters 1024]

1,13:1 b R ———

[Core 1x1/1 fiters 256]——h—[Corv 1x1/1 fiters 128

$13x13x256] 13x15x128
[Corv3x3/1 fiters512] L Upsampis
+ 13x13%512
E’.’:Dm-' /1 fivers ax[uasﬁﬂ 26x26x128
Curput 153x13x24

.'-{_ Concatenate _]

l 2Ex 260 384
[Corw3x3/1 fiters256 J
l 26K26%256

Einm' 1x1/1 fiters 3:[{Ia545:1]

lﬂ uTput 2exlbals

DotNet2020 #DotNet2020

Real time object detection

Object detection in real-time video is considered to be much harder than image classification
Key factors to consider:

* Neural network topology.
e Model compression
* Post processing optimization.

e Performance.

DotNet2020 #DotNet2020

Real time object detection

Neural network topology

How to select a good network topology for real-time object detection?

38 W YOLOV3
—@ RetinaNet-50
RetinaNet-101

367 @ Method mAP _time ‘
B] SSD321 28.0 61
i C] DSSD321 280 85 .
3 D1 R-FCN 590 85 * Data augmentation

B
g, 34 :
o |E| E] SSD513 31.2 125 Training datataset
O a5 F] DSSD513 332 156 : :
G] FPN FRCN 360 170 * |nput image resolution
IE RetinaNet-50-500 325 73 e Boundary box encoding
30 | @ RetinaNet-101-500 34.4 90 . £ Iti I :
RetinaNet-101-800 37.8 198 Use of multi-scale images In
zg::gvg-gfg g?-g gg training or testing
- v - '
28 YOLOv3-608 33.0 51 °
50 100 150 200 250

inference time (ms)

DotNet2020 #DotNet2020

Real time object detection

Model compression

The goal of model compression is to achieve a model that is simplified
from the original without significantly diminished accuracy (size/latency).

Compression techniques: N
Y
* Pruning. \VW7 LN
e Quantization. N (7 AN
Y "/)
. . . :.-":._' i!,:rll.'l R‘" \
* Low-rank approximation and sparsity. NM [
. I.'I_""w-. .':- _.-"'-l.
* Knowledge distillation. HC Y
I/
* Neural Architectur Search (NAS). 4
6 inputs, 6 neurons (including 2 6 inputs, 5 neurons (including 2

outputs), 32 connections outputs), 24 connections

DotNet2020 #DotNet2020

Real time object detection

Post-processing optimization

The output of the Convolutional neural network is processed and converted into a form that can be fed to
the non-max suppression (NMS).

Convert the processing pipeline in a pure vectorized format instead of relying on for-loops can increase the
speed of our process

DotNet2020 #DotNet2020

Real time object detection

Performance

The deployment of a real-time object detection system requires:

* How are we going to consume our model? Dﬁ
 Achieve object detection with real-time throughput and low
latency.
* Where is our model deployed?

* Minimize the required computational resources allows more
resources to be allocated for other tasks.

DotNet2020

ML.NET components

|IDataView (Data set)
File Loaders
Database Loader
Image Loader

Data Transforms

Developer friendly APl for Machine Learning

ML Model Training & Consumption

Classical ML

Classification
Regression
Anomaly Detection
Recommendations
Time Series
Ranking

Clustering

Computer Vision
Image classification
Object Detection (*)

(40 trainers/algorithms)

(*) Object detection coming soon after v1.4-Preview

. . Model Consumption
Training ML tasks 2 Evaluation

Consumption
Model
Prediction Engine

Prediction Engine Pool

Evaluation
Model Evaluators
Quality metrics

Extensions & Tools

ONNX consumption
TensorFlow consumption

AutoML

CLI (Command-Line Interface)

Model Builder in VS

#DotNet2020

BUILD MODEL
Collect and load

~

\\\\\\Hﬁﬁ Save()

> data
IDataView v
Improve model Create pipeline
Evaluate() Append()
{
ITransformer i\hmm_ Train model 433,/EIEstimator
Fit()
ITransformer
v
Save model

/

GE MODEL

Load model

Load()

ITransformer
v

Make predictions

Predict()

CreatePredictionEngine().

_

DotNet2020 #DotNet2020

ML.NET 19-20 Updates:

* Image classification based on deep neural network

w I lF > NnVIDIA.
retraining with GPU support

. - i . . Inception

* Improvements in for image classification and object “
detection (Tensorflow.NET library) e

. . o - Object

Tensorflow

model

 Added additional supported DNN architectures to
the Image Classifier Full model re-train and transfer learning
* Inception V3
* ResNet V2101 ML.NET Tensorflow Transform
* Resnet V250

* Mobilenet V2 Tensorflow.NET C# binding

Tensorflow C++ API

https://github.com/SciSharp/TensorFlow.NET

DotNet2020 #DotNet2020

Project Rocket

A powerful configurable platform for live video analytics

Project Rocket’s goal is to democratize video analytics: build a
system for real-time, low-cost, accurate analysis of live videos.

* Built on C# .Net Core

* Plug any deep learning model: Tensorflow, Darknet, Onnx
* Custom models support

e Simpler motion filters (OpenCV)

e GPU/FPGA Acceleration

e Docker containerization

DotNet2020 #DotNet2020

Project Rocket

Pipelines

Five pre-built video analytics pipelines
static void Main(string[] args)
{

while (true)
- . {
1. Alerting on objects (Darknet Yolo V3)

Mat frame = decoder.getNextFrame();

2. Alerting on objects (Fast R-CNN) e

List<Box> foregroundBoxes = bgs.DetectObjects(DateTime.Now, frame, framelndex, out fgmask);

3. Detecting objects with cascaded DNNs cheap filters,
and after-the-fact querying

occupancy = lineDetector.updatelLineOccupancy(frame, framelndex, fgmask, foregroundBoxes);

4. Detecting objects
5. Edge/Cloud split (Azure Machine Learning)
6. Edge/Cloud split + containers

DotNet2020 #DotNet2020

Project Rocket

Pipelines

: DNN Object

DotNet2020 #DotNet2020

Demo

Microsoft Rocket Video
Analytics Platform

DotNet2020

#DotNet2020

Arquitectura Live video analytics + Rocket

Azure Intelligent Edge

Live Video Analytics on loT Edge

RTSP Frame Http IOTHUB
> —» . . Message
Source Rate Filter Extension Sink

Input:

Video Frames

=

Output;
Inference Event JSON

v
Background
Subtraction

Line Based
Trigger

Detector

Rocket container with Yolo V3
Web Server
(REST)

Light DNN Heavy DNN
Detector Detector

Tin

\ loT Edge
F —
J Hub

Time Series
Insights

DotNet2020 #DotNet2020

Live video analytics on loT Edge

‘ Cloud Services
N @
Key terms to undertand LVA: ¢ g
| - Edge I I

° MEdla graph . Business data ii > | _ i .
o VIdEO FECOrdlng Other loT = N aam Business logic +—r smp Business app
° Video playbaCk S @ @ : @ Live video analytics
* Continuous video recording

.) Cameras)il I Il +« + Capture
* Event-based video recording | \
e Live Video AnaIYtiCS without video Analyze —# Publish

recording Y !
Video management o o Video Al

system

DotNet2020 #DotNet2020

Live Video Analytics:
Analyze live video by using your own HTTP model

LVA steps in our demo:

1. An edge module simulates an IP camera hosting a Real-Time

Streaming Protocol (RTSP) server.
loT Edge device

2. An RTSP source node pulls the video feed from this server and =3 Media Graph
sends video frames to the frame rate filter processor node. @ P oT Ed
o ge
3. This processor limits the frame rate of the video stream that Hub
reaches the HTTP extension processor node. .-—b SRuTuSrie — Framfeiate —> Ex';lETﬂT;ﬂﬂ —> méf;;: Eiﬂk — -
4. The HTTP extension node plays the role of a proxy. It converts the
video frames to the specified image type. Then it relays the

image over REST to another edge module that runs an Al model

behind an HTTP endpoint. -’-if%iﬁ Al Inference service

5. Al Edge module is built by using the YOLOv3 model to detects
objects

6. The HTTP extension processor node gathers the detection results
and publishes events to the loT Hub sink node. The node then
sends those events to loT Edge Hub.

DotNet2020 #DotNet2020

Video streaming (Media graph)

A media graph lets you define where

“E8 Custom business logic <

media should be captured from, how it LD
should be processed, and where the results o1 edge /.
should be delivered. device
Live video analytics supports different . Media
ra
types of nodes: 1 p
\ 4

 Source nodes (RTSP, ONV'F) .-—> Source. —» Processor —» Sink > Egiirgzl
* Processor nodes (Frame rate filter) !

Processor —® Processor —®» Processor —®» Sink R Eg’gi'}’g:'
* Sink nodes (lot Hub) I

O

Q_ Custom media processor

DotNet2020 #DotNet2020

Media graph

Topologies and instances
Live video analytics allow us to manage media graphs via two concepts:

 Graph topology

e Graph instance

GraphInstanceSet
((Updates) '}
hI
Start Q— GraphInstanceSet > [| o
(Requires valid Graph Topology dl —— GraphInstanceActivate —» Activating
to have been created) €
* \
t [Error]
v
End () «— GraphInstanceDelete Deactivating Active
<«— GraphlInstanceDeactivate — iai -
(Can delete Graph Topology after Flushing data P Media is beéng
all instances have been deleted) processe

DotNet2020

Azure loT — Hub and Edge

Azure Intelligent Edge

Live Video Analytics on loT Edge

RTSP Frame
> -
Source Rate Filter

loT Hub

Http

Message

Extension Sink

=

I
Input:

Video Frames

Output:
Inference Event JSON

Rocket container with Yolo V3

¥

Background

Subtraction
Detector

Line Based
Trigger

Web Server
=)

Light DNN Heavy DNN
Detector Detector
Tin

.) loT Edge W
J Hub

Time Series
Insights

#DotNet2020

DotNet2020 #DotNet2020

Azure loT Hub

e Scale your solution

* Secure your communications

o "l
: = ~ o @ > +
. - = L®e uilt-in endpoin
* Route device data o puitin endpoint
. . Device

* Integrate with other services Message routing AN A . —
vent Hu E:.
* Configure and control your devices pr— ol g - - —
m Route C //‘\ =

 Make your solution highly available

Service Bus Queues

K
K

Route D 3 + -
.

® |

Storage Blob

 Connect your devices

Custom endpoint connectors

+ represents message enrichments

DotNet2020

Azure loT Edge

Azure loT Edge is made up of three components:

* loT Edge modules are containers that run Azure services, third-party
services, or your own code. Modules are deployed to loT Edge devices
and execute locally on those devices.

* The loT Edge runtime runs on each loT Edge device and manages
the modules deployed to each device.

Installs and update workloads on the device.

Maintains Azure loT Edge security standards on the device.
Ensures that loT Edge modules are always running.

Reports module health to the cloud for remote monitoring.

Manages communication between downstream leaf devices
and an loT Edge device, between modules on an loT Edge
device, and between an loT Edge device and the cloud

wlgm L e =

* A cloud-based interface enables you to remotely monitor and
manage loT Edge devices.

Azure Cloud

ﬂ:i]_'m Azure Container
I Registery

Function

#DotNet2020

l L
Development
machine Stage

<]

Visual Studic dOcker
Code

loT Hub
u "1
LN -
.. loT Edge device Deploy Insights
| = l
Sensor Function
— I

Azure loT Edge runtime

DotNet2020 #DotNet2020

Demo

Live Video Analytics
with Microsoft Rocket

DotNet2020 #DotNet2020

Questions & Answers

DotNet2020 #DotNet2020

Thanks also to the sponsors.
Without whom this would not have been posible.

Thanks and ...

See yOu SOOh' plain concepls

& Microsoft

axazure ([@plasticsm

Universidad
& CEU | e

