
Discovering your superpowers!

Understanding Cloud Application Models



ORGANIZATION

PLATINUM SPONSORS

Thank you!

COLLABORATORS



@aVerySpicyBoi

rynowak (github)

Formerly: ASP.NET Core architect for MVC/Razor/Blazor

Current Focus: Open Application Model - https://oam.dev/

I like: 

• Designing useful tools for developers

• Open Source

• Lots of different languages and technologies

Ryan Nowak
Azure Incubations (Azure CTO’s Office)

https://oam.dev/


Agenda

• What is an Application Model?

• How can we think systematically about cloud runtimes?

• Superpowers!

• How can we move to production faster?

• How can we write application code that’s more flexible?



How often do you learn a new technology?

From: Stack Overflow 2020 developer survey

https://insights.stackoverflow.com/survey/2020#technology-learning-new-tech-frequency


My Journey in 2020
• In the last few years:

• I’ve had many conversations with .NET 
developers about microservices

• We organize surveys, interviews, and 
trials for .NET microservices tech

• Everything except your code is a pain 
point for developers!

• I moved to Azure:
• Now I’m working on solutions to these 

problems



What is an 
Application Model?



An Application Model describes the interface between software 

components and a runtime environment..

Me 

A useful definition



Some Examples

Software 
Components

Process
"Hosted" 

Application
Container

Interface
Environment 

Variables
Networking Files Deployment

Platform 
behaviors 

(many more)

Runtime 
Environment

OS
FaaS (Azure 
Functions)

Website 
PaaS (Azure 
Web Apps)

Docker Kubernetes



When I talk to developers…

• Learning cloud technologies like Kubernetes or Docker is frustrating

• Development and production are different

• My theories:

• We deploy as the last step … it works on my machine and then …

• We become users ... we learn someone else’s software but ... 

• The concepts we understand don’t match the features offered



Impedance mismatch

Connect to 
database

Environment 
variables

Alternate title: Different levels of abstraction



Yak Shaving

To connect to a database we must:

• Choose an environment variable name

• Figure out the right connection string

• Figure out how to set an environment variable 
in the deployment platform (without checking 
in a secret)

• Test it in production (and repeat if you got it 
wrong)

• Now figure out the next problem and repeat



Applying systematic 
thinking



Planning: For each Service

• What does this service need?

• What needs to be deployed? 

• Communication with other services? Data stores? Credentials?

• What settings does it expose?

• What kinds of diagnostics systems do I need? (Logging at a minimum)

• Understand the capabilities of the platform

• What options does it provide?

• What are the tradeoffs of those options?

• Map the needs to the capabilities

• Write the manifests and deploy!



Planning: Our First App



Our First App: What does this service need?

• What needs to be deployed?

• Both are ASP.NET Core 3.1 applications – so we need that!

• Communication?

• Backend: Needs to listen for HTTP so frontend can talk to it

• Frontend: Needs to listen for HTTP so users can browse to it

• Frontend: Needs to know the address of Backend so it can talk to it

• What settings does it expose?

• Backend: Listening address, 

• Frontend: Listening address, Address of the backend

• What diagnostics?

• Logging



Introducing the 
Process



What did we find?

Process

Communication

Ports

Configuration

Files
Environment 

Variables
Command Line

Diagnostics

Console I/O

Deployment

Files



Being Productive with Processes

Manual management of:

• Ports/URLs

• File Locations

One process is really easy

• 3-4 related processes gets out of control 

• You can script it, but it is hard to maintain

We developed Tye to make this easy: https://aka.ms/tye

https://aka.ms/tye


Something Special: Hosted Environments

Host runs code in the same process as yours

• Usually this comes with an SDK

Networking is controlled by the host

• You don’t choose a port to listen on

The host provides a deployment format

• This is usually a zip file plus a manifest

You don’t get to start the process - Ex: IIS, Azure Functions



Hosted Environments

Host

Communication

Ports 
(managed by 

host)

Other 
Bindings

Configuration

Host 
Configuration

Files (maybe)

Diagnostics

Logging API 
(managed by 

host)

Deployment

Files



Two models

Reverse Proxy In-Process Hosting



Two Models

Communication happens over sockets

Your application could be *anything*

You choose an address and configure 
the server to point at it

No SDK for interacting with proxy in 
code (you figure out diagnostics, 
lifecycle)

Reverse Proxy
Communication happens through API

Your application must be a supported 
platform of the server

Server manages address, configuration

Comes with SDK for diagnostics, 
lifecycle, rich API

Ex: IIS, Azure WebSites, Tomcat

In-Process Hosting



Two Models

Old ASP.NET (.NET Framework) uses the In-Process model and is coupled to IIS & Windows

• System.Web.dll is a tightly coupled to IIS’s architecture and API

• Some projects of that generation supported non-IIS (Katana)

ASP.NET Core used the Reverse Proxy architecture on release

• Kestrel server was first based on LibUV (used in node) as a cross-platform standalone server

• We made heavy investments in System.Net.Socket and far surpassed LibUV over the years

• IIS has a module for Reverse Proxy integration (used in Azure WebSites)

• This was slow and diagnostics were bad compared to ASP.NET Core without IIS

• We implemented In-Process support in 2.2 without coupling ASP.NET Core to Windows



And then for a long time nothing happened…



CNCF survey

Introducing Containers

https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf


Introducing 
Containers



What did we find

Container

Process

Communication

Ports (Isolated) Hostnames

Configuration

Files (Isolated)
Environment 

Variables
Command Line

Diagnostics

Console I/O

Deployment

Base Image 
(Dependencies)

Files (Isolated)



Being Productive with Containers

Ports and files are now isolated

• Now we have consistency instead of random numbers to remember

Can bake configuration into the image

• Files and startup command are part of the image

• Environment variables still useful for overrides

Deployment is more powerful and foolproof

• Versioning/naming of images

• Ability to use registries for storage

• Can ship arbitrary dependencies and OS configuration in image



This sounds great right?

• Easy to copy-paste and therefore a lot of copies to maintain

• Usually 1-2 people on the team really know how it works

• Optimizing your Docker build for size increases the complexity

• 2-phase build makes it hard to use P2P references or shared build 
assets

• I don’t know anyone who thinks this is easy and fun…

Except Dockerfiles are really painful 



My controversial advice

Think hard about what you want to optimize for

• Don’t copy techniques from native-code platforms for “best practices” reasons

• Optimize for maintainability until you need to optimize for something else

Recipes that work:

• (service-per-repo) Copy whole repo into Container and build (2-phase) inside – very flexible

• (few dependencies) Publish files with a script and build with CLI (1-phase) – no Dockerfiles!

• (smallest total size) Use the linker with a standalone publish – final layer will be big but total size 
small



More than one at a 
time



Planning: A more complex app



What does this service need?

• What needs to be deployed?

• All are ASP.NET Core 3.1 applications – so we need that!

• Communication?

• Voting: needs to connect to redis

• Worker: needs to connect to redis and postgres

• Results: needs to connect to worker

• All need to listen on HTTP: voting and results for users, worker for other services

• What settings does it expose?

• Voting: list of categories is configurable

• All: URLs and Connection Strings

• What diagnostics?

• Logging



Docker’s capabilities

• Deployment:
• Containers!
• Can configure docker-compose to build images for us

• Communication:
• We need to map a port per externally available service
• Docker provides port isolation for internal communication
• Docker will assign a hostname for internal communication

• Settings:
• Docker has all standard things (files, command line, environment variables)
• Docker also has a secret store which get mounted as files in the container (not used here)

• Diagnostics
• Logging via Console I/O



We already understand Docker…

• Deployment: 
• Use the ASP.NET Core base image
• Note: we’re running redis and postgres as images for local/dev puposes

• Communication:
• Use port 80 (default for HTTP) since we have port isolation
• Use environment variables to configure URLs relying on docker’s hostnames
• Use environment variables to pass connection strings (hardcoded in docker-compose.yaml

for dev)

• Settings:
• Using files inside the images and environment variables

• Diagnostics:
• Using console logging (default)



Docker-Compose



Kubernetes



A very fast Kubernetes primer

• Kubernetes has lots of features and lots of types

• Deployment is the one you want to for your services

• The type system in Kubernetes contributes a lot of complexity to the format

• Kubernetes objects have:

• Metadata (name, namespace, labels, more…)

• Status (data tracked by the runtime)

• Spec (details you configure)

• The use of the same object for all of this contributes even mode complexity

• Kubernetes has powerful features for routing and networking (Service)

• Routing requires a separate object from the deployment

• Thus, we need a way to indicate relationship between Deployments and Services

• This is enough to scratch the surface – many of the concepts in Kubernetes are for Ops not Developers



What did we find

Pod

Container

Process

Communication

Ports (Isolated)
Hostname 

(generated)

Configuration

Files (Isolated)
Environment 

Variables
Command Line Secrets

Diagnostics

Console I/O Health Checks

Deployment

Base Image 
(Dependencies)

Files (Isolated)

Service

Routing



Wrap Up



Application Models

• “An Application Model describes the interface between software components and a 
runtime environment”

• Your job is to use the model provided by your runtime to describe your application

• Application models vary tremendously in richness and what concepts they use

• I work on Open Application Model (OAM) – https://oam.dev to make life better

https://oam.dev/


Practical Applications: Design

• Apply systematic thinking
• What does each service need?

• Deployment
• Communication
• Configuration
• Diagnostics

• Understand your platform:
• What options does the platform provide?
• How does your platform work? (hosted vs proxy) (container vs process)

• Map your needs onto what the platform supports
• This is ultimately what you need to write down to deploy successfully!



Practical Applications: ASP.NET Core

• Leverage what ASP.NET Core provides:

• Configuration

• Logging

• Server Configuration

• Don’t hardcode! Configure:

• Listening Ports

• URLs/Connection Strings

• Check out Tye for multi-service development: https://aka.ms/tye

https://aka.ms/tye


What I didn’t cover…. More diagnostics

• Robust diagnostics is the difference between a demo and a real application ☺

• These aren’t usually tied to the runtime environment

• There are more types of logging systems out there:

• Structured Logging with JSON

• Metrics

• Distributed Tracing



Thanks and …
See you soon!

Thanks also to the sponsors.
Without whom this would not have been posible.


