
24.07.20 VIRTUAL COFFEE

Pair Programming:
The Force Awakens

Ander Conal



Ander Conal

SOFTWARE DEVELOPER 

@anderconal

When I’m not working, you’d probably catch me boxing, walking with my
dogs and family, playing with the Nintendo Switch or playing my old vynils
from my era as DJ and event promotioner. 

Actually I work at Plain Concepts Bilbao where I work programming, 
talking and educading.



1. What is Pair
Programming?

2. Pair Programming Styles
3. The (numerous) benefits of

Pair Programming
4. The (dangerous) dangers

of Pair Programming
5. Pair Programming in the

recruitment process
6. Last conclusions (hopefully

with the force awakened)

Schedule



On Pair Programming

martinFowler.com

• Birgitta Böckeler
• Nina Siessegger



What is Pair
Programming?



What is Pair 
Programming?

• Is a (good) programming practice
• Modest adoption in the industry

• 2 people working in the same PC… ¿and 
nothing more? 

• One of the good practices recommended by 
Extreme Programming (XP)



Pair Programming
Styles



Driver and 
Navigator



Driver & Navigator

• Driver
• The one who rides (takes care of 

the keyboard, the mouse…)
• Focuses on what is being doing 

at the moment, without worry 
about the big picture

• Comments what is doing while 
is doing it

• Navigator
• The one who observes while the 

driver is writing
• Reviews the code in live, shares 

ideas and gives directions
• Takes care about the big 

picture, next steps, bugs…



Driver & Navigator

• 2 different perspectives about the code
• The driver will have a more tactical

perspective (details)
• The navigator will have a more strategic

perspective (observing from outside)



Driver & Navigator

• Start with a well defined 
task

• Set and focus on a small 
goal each time

• Change keyboard and 
roles regularly

• The navigator will avoid 
tactical thinking (details
for the driver)

• The navigator will think in the 
medium-long term. Next steps, 
obstacles, ideas to argue about once 
the small goal have been reached….



Pair Programming
Styles: Ping Pong



Ping Pong

• Embraces Test-Driven 
Development (TDD) a 
(good) practice of Extreme 
Programming (XP)

• Ideal for really well 
defined tasks which can 
be developed via TDD



Ping Pong

• Ping
• Developer “A” writes a 

failing test
• Developer “B” writes a new 

failing test

• Pong
• Developer “B” writes the 

implementation and makes 
the test pass

• Developer “A” writes the 
implementation and makes 
the test pass



Ping Pong

• Each Pong can be accompanied by 
another good practive of Extreme 
Programming (XP), pair refactor before 
continue with the next failing test

• Red – Green – Refactor approach
• Write a failing test (red), make it pass with the 

minimum (green) and refactor



Strong-Style 
Pairing



Strong-Style Pairing

• Perfect for the knowledge 
transfer

• Follows a rule:
• “For an idea to go from your 

brain to the computer, it 
must do it using the hands 
of other person”



Strong-Style Pairing

• The navigator is normally 
the most familiar person 
with the technology, the 
task or the business

• The driver is normally the 
one with less experience
(with the code, with the 
tools, with the business…)



Strong-Style Pairing

• The driver trusts the 
navigator. Should not be 
upset because of the lack 
of understanding of some 
parts of the session

• Useful for
• Onboarding
• Knowledge transfer

• Don't overuse
• The idea is to change roles 

in the short term



Pair Development



Pair Development

• Not a technique but a 
way of thinking

• To carry out a user story, it 
is not only necessary to 
program

• As peer, you are 
responsible of all the 
needed stuff to finish the 
task



Pair Development

• Examples
• Understand the problem
• Find a solution
• Plan your approach

• Examples
• Investigate and explore
• Document



The (numerous) 
benefits of Pair 
Programming 



Knowledge transfer

• Prevents knowledge silos
• 2 minds understanding and discussing a 

problem, increase the probability of find a 
good solution

• Different experiences and perspectives
allow us to consider more alternatives



Reflection

• With Pair Programming
• We are forced to discus solutions
• We force ourselves to explain things better 

and better, helping us discover if we have 
really understood the task well, or if our 
solution is the right one

• Not only applicable to the code, but to the 
user stories



Focus

• Is easier to focus when you are not alone
• Each part of the peer have to 

communicate, say what is doing and 
why!

• If the “why” is not on the way of the main 
goal, the peer can help focusing again



Pair review in live

• 4 eyes instead of 2 reviewing each 
implementation detail

• Refactoring is a part of Pair 
Programming. If something is wrong, we 
change it on the fly



2 ways of thinking, combined

• Tactic + strategic brain
• Could an individual combine both?
• Unify both ways of thinking will 

increase code quality. You’ll be able to 
set focus on the details (tactic) and have a 
global vision (strategic) at the same time!



Collective Code Ownership

• Continuously practice of Pair 
Programming ensures each line of code 
have been touched by, at less, 2 people

• Facilitates each member of the team to 
be comfortable changing anything in 
the code



Maintains a low WIP (Work In 
Progress)

• Doing Pair Programming in a 4 people 
team who all do Pair Programming, helps 
limiting the WIP from 4 to 2

• More focus on the important tasks, with 
more code quality



Fast onboarding

• Minimizes the impact of the onboarding 
of new employees by forcing people to 
communicate much more



The (dangerous) 
dangers of Pair
Programming



Pair Programming can be 
exhausting

• When working alone, you take breaks 
when you want

• Doing Pair Programming forces you to 
stay focused for longer and find breaks 
that match the couple's way of thinking, 
their rhythm, etc.

• It can be very intense and exhausting



Interruptions due to meetings

• If with one person it can be crazy, imagine 
putting together the calendars of 2 
people who have meetings in different 
places and at different times



Different levels

• Can take for granted how far each can go
• May cause frustration due to difference 

in rhythm



Doing Pair Programming with a 
lot of uncertainty

• When working with a new technology 
that you both use for the first time, or 
trying a new paradigm, there may be 
problems

• Experimenting and searching can be 
frustrating, because each person learns 
at a different pace and in a different 
way



You don't have time for yourself

• Each one has their habits ... listening to 
music, stopping to learn something new 
X minutes a day ... with Pair Programming 
this is complicated ...



Context changes

• If you are working on task X, you pair with 
task Y and the next day you need to pair 
for task Z, there may be too many context 
changes



Pair Programming requires 
showing your vulnerabilities

• Pair Programming forces us to share
everything we know, but also what we 
don't know

• It can be hard to say you don't know 
something or to be insecure about a 
decision

• Imposter syndrome, 10x engineer and 
others don't help



It costs that people who have 
never done it accept it

• Every time it goes down, but there are still 
mentalities in different positions, from the 
lowest to the highest, in which Pair 
Programming does not fit

• It is usually seen as a waste of time and 
therefore money



Pair Programming
in the recruitment
process



Pair Programming in 
the recruitment process

• Increasingly common as a second or 
third step of a job interview for the 
software industry

• Like the practice itself, it has its 
advantages and its disadvantages. If not 
planned well you can make this step 
useless



Examples and casuistry 
in the recruitment 
process
• The interviewee has 

never done Pair 
Programming
• Strong-Style Pairing
• Pair Development

• The interviewee has little 
experience with 
language / technology
• Strong-Style Pairing
• Pair Development



Examples and casuistry 
in the recruitment 
process
• The interviewee has 

experience with TDD and 
with language / 
technology
• Ping Pong
• Pair Development

• The interviewee has 
experience with 
language / technology 
but not with TDD
• Driver and Navigator
• Pair Development



Recruitment process 
conclusions

• The easiest style to 
introduce in any case is 
Pair Development

• In addition, Pair 
Development will allow 
you to see beyond the 
code

• It is necessary to explain well 
what style we are going to use 
and what role each one is 
going to play

• Do not base your decision 
100% on the result of this step. 
Nerves and other factors play 
tricks



Recruitment process 
conclusions

• Tech Sector Job Interviews Assess 
Anxiety, Not Software Skills 
(https://news.ncsu.edu/2020/07/tech-
job-interviews-anxiety)

• Does Stress Impact Technical Interview 
Performance? 
(http://chrisparnin.me/pdf/stress_FSE
_20.pdf)

• Depending on the person you
are interviewing, Pair
Programming could cause 
anxiety and stress because 
they’re not used to working on 
a whiteboard in front of an 
audience

https://news.ncsu.edu/2020/07/tech-job-interviews-anxiety
http://chrisparnin.me/pdf/stress_FSE_20.pdf


Last conclusions
(hopefully with the
force awakened)



Pair Programming is 
fine

• Well used, it is very powerful and gives us 
many benefits

• Now that we know the (dangerous) 
dangers, we are closer to avoiding them 
and staying with only the benefits

• Always use it in combination with other 
good practices and good planning



Pair Programming is 
fine

• Do not stick to the letter with the styles 
or the way to do it

• Combine various styles
• Try them all separately and choose the 

one or the ones you like the most
• Invent a new one and tell us about it



Thank you

www.plainconcepts.com

@plainconcepts

@anderconal



SPAIN

www.plainconcepts.com

For further information

info@plainconcepts.com

USA UAE

UNITED KINGDOM GERMANY NETHERLANDS


